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Mesoscopic simulation of dynamic crack propagation in rubber materials™
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Abstract

Tear fatigue analyzer (TFA) tests on rubber are simulated, for the first time, with a combination of a mesoscopic model of self-similar
crack propagation and a complex viscoelastic rubber model (flow-enhanced linear standard solid). In this way, it is possible to establish
interconnections between mechanical fracturing tests (TFA) and intrinsic material properties. © 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Service life prediction of materials is clearly of high
practical and scientific interest and has attracted the atten-
tion of chemists, engineers, and physicists [1]. In the case of
rubber and other polymer materials, it is reasonable to
assume that microcracks from which failure originates are
formed via the sequence of several steps [2]: (i) molecular
chains attempt to move in tensile direction, causing a slip
between chains and producing reorientation; (ii) cross-links,
entanglements and filler particles hinder the motion of
chains. Chains acquire a state of tension and local scission
occurs; (iii) scission of one chain transfers stress to the
neighboring chains, chain scission propagates to the
surrounding molecules; the cumulative effect produces a
microvoid; (iv) microvoids that have grown to a critical
size, say c¢j, form microcracks which continue to grow
irreversibly.

However, estimating the fatigue lifetime of elastomeric
components is still a difficult task for compound chemists
and designers in rubber industry. Even an FE optimized
design according to stress, strain or even energy based para-
meters can lead to unexpected failure in service, sometimes
in component areas expected as low loaded. Therefore, it is
essential to use fracture mechanics methods to characterize
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the toughness of different elastomers under quasi-static and
dynamic stress when predicting the life of highly stressed
elastomer components. Using these methods — with only
moderate test expenditure — leads to optimization
strategies for new applications [3—10].

However, the application of fracture mechanics to rubber
generates some difficulties because of the large deformation
of elastomers. In particular, elasticity of rubbers is not linear,
and, more over, highly deformed cracks do not stay sharp as
in the Griffith’s model (A. A. Griffith, Philosoph Trans R Soc
Lond A221 (1920) 163; see, for example Ref. [11]). Never-
theless, a step forward in life estimation is fracture
mechanics-based parameters which include the material’s
susceptibility against crack initiation, and the toughness of
the material against crack propagation. These mostly energy-
based parameters like tearing energy or J-integral regard the
necessary loading for crack propagation at different crack
propagation velocities. This allows ranking different materi-
als under the same loading conditions. Nevertheless, there
are several fundamental issues unsolved in the fracture
mechanics of rubber-like solids.

For the quasi-static load case, the material behavior of a
pre-damaged sample, under increasing load, is compared
with a pre-determined damage parameter. The material
analysis is conducted according to tension, deformation,
or energy variables under specific damage propagation,
e.g. with technically recordable crack initiation and
maximum crack length before a sample breaks (see also
e.g. Refs. [3-7]).

For the dynamic load case, the damage progress is first
determined over the period of a pre-cracked sample with
fixed stress parameters (e.g. with TFA tests [5]; see
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Fig. 1. TFA equipment with load frequency.

Appendix A and Figs. 1 and 2). The material toughness can
be characterized as the crack length changes per stress cycle
(da/dN) via different stress intensities (this is the procedure
that has been selected here!). N being the number of cycles
and a being the crack length. It is also possible to character-
ize toughness with only one fixed exterior load via the
current stress, deformation, or energy of specific crack
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Fig. 2. Geometry of the used rubber samples.
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length changes. These are usually parameters of an incipient
crack propagation, and a maximum crack propagation
before the sample breaks. The implementation of these
principal methods is complicated because it has to be
ensured that the parameters obtained during the stress test
can be directly linked with the stress at the tip of the crack
and thus do not, for example, characterize the sample
deformation (caused by the specimen configuration). This
situation — typical for elastomers — is currently described
as follows: “Life prediction of rubber components as an
engineering tool is still in the infancy stage. There is a
great need for a comprehensive life prediction model
which incorporates various approaches [12].”

Note that new FEM-supported possibilities for life
prediction, in connection with constitutive material laws
are available, especially in the case of dynamic stress tests
[13]. Here, it is important to understand, and to access at
least on a semi-microscopic level, the material behavior
occurring directly within the tip of the crack — derived
from the macroscopic (in our case non-linear viscoelastic)
rubber material. Molecular simulations are successful for
amorphous polymeric solid bodies in the glassy state (e.g.
Refs. [14-17]).

In this paper, we developed an analytical semi-
microscopic model, which combines the assumption of
self-similar crack propagation [18,19] with a complex
viscoelastic rubber model (standard solid). We present the
basic principles and demonstrate the comparison between
modeling of dynamic crack propagation and TFA test for
the simple case of an unfilled synthetic rubber. The assump-
tion of self-similar crack propagation means that the shape
of the deformation zone does not change but becomes self-
similar after each cycle, the length s of the zone is increased
by the same ratio. After one cycle, the deformation zone is
shifted by As (Fig. 3).
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Fig. 3. Crack growth during one cycle according to the model of self-affine

crack propagation.

2. Self-similar crack propagation in rubber

We assume that the deformation zone under cyclic stress
at the tip of the crack is defined and characterized by a stress
intensity factor (see Appendix B) with

K .
Kl = Kmin(] + Sin O)t) (1)
AK = Kmax - Kmin (2)

The true stress o in the deformation zone at the tip of the
crack (Fig. 3) varies as follows, depending on the stress
intensity factor K;:

o(t) = K nin (1 n AK
== a'C K

lc min

sin wt) — (1) = 0y + ook e

3)

where o is the cohesive stress, K;. the critical stress
intensity factor, and
Ko AK
min k

0y =0 ; = (3a)
¢ ch Kmin

The stress intensity factor is needed to determine the
COD values during the TFA test (see Appendix B). For
tension loading, the growth Aé of the COD & (Crack
Opening Displacement) after a complete stress cycle is
proportional to the deformation rate de/dr integrated over
a stress period 7 [18]:

85 (Tdey A

— 4
) o dr s “)

with s representing the length of the deformation zone and
As the crack zone propagation per cycle (Fig. 3).

We assume that the deformation zone continues to creep
by (As)cycle during every cycle. This value corresponds with
the known crack length change per cycle, i.e. da/dN (see
Appendix B). The latter is thus determined according to
Eq. (4) from the elongation rate integrated during a cycle.
The following model assumptions are made:

1. Neo Hooke’s law is assumed between the nominal

stress and deformation according to the theory of rubber
elasticity:

c=GA—AH=GA (5)

with G; the initial shear modulus and A = A — A~% a non-
linear elongation ratio.

2. The temporal change of the crack tip elongation para-
meter A is simulated using a (Eyring) reaction kinetics law
for activated viscose materials [20]. Then, we obtain

A= Asinh( E) (6)
RT

where A is associated with an activation energy, v is an
activation volume, and R is the gas constant. According to
such characteristics of the stretch parameter A, we can
introduce a mechanical model with elements as shown in
Fig. 4 [20]. The material elements are parts of a standard
solid model expanded with a series damper in the secondary
creep stage.

Note, the effect of viscous flow on the creep stretch will
not occur in the secondary creep stage if one applies the
model to the overall viscoelastic behavior of non-damaged
rubbers. Then, the dashpot connected in series with the
spring can be dropped and the model becomes an equivalent
standard solid with three elements, as described in many
textbooks.

We obtain the following relations between the stress and
stretch parameter, or the time rate of stretch parameter [20]

o = const. (7a)
A=A+ Ay + A (7b)
and for the temporal change of the elongation parameters

A= Gi (82)
A, = Asinh(v,0) (8b)
A, = Asinh[v, (o — G, A1)] (8¢)

By integration, the equation for the temporal change of
elongation at a given stress (~creep characteristics) is then

< A

A\ 4

Fig. 4. Schematic diagram of the non-linear mechanical model.
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Fig. 5. Estimation of the initial values of material parameters A, v, from stress—strain curves realized at two different strain rates. The procedure is described in

the text. (b) A magnification of the cross-point.

as follows (see, for example, Ref. [20]):

A() = Gi + Asinh(v,0)t

1

+ 1{1 - itan}f‘[tanh(E)exp(—Atthtt)]}
G, 12 2
9

3. For small elongations, the simplified interconnection
between elasticity e = A — 1 (in Eq. (4)) and the elongation
parameter applies:

A=A—A"2=3e+ o) = 3e (10)

4. Elongation € for filled rubber is replaced with the local
intrinsic elongation €;,, which considers the elongation
amplification due to the presence of the filler material
carbon black:

€int = Xefr€ (11)
Xeff =1+25 PDeff + 14.1 Qogff (12)
our = o(1 + 0.5(1 + 0.02139 x DBP)0.685 — 1) (13)

DBP is here the dibutyl phthalate adsorption number
characterizing the internal structure (voids) of the filler.
The temporal change of the elongation parameter follows

from Eq. (9):
o\ -
tanh( —— Je ~"™

. dA(z ( )

A@t) = d( ) _ Asinh(vgo) + 24, ZV -
! 1- tanhz(‘—)e 2=l

2

(14)
with 7 '= A,G,. The parameter 7, represents a character-

istic time of the material that will be discussed later.

The crack propagation according to Eq. (4) follows with
the temporal stress Eq. (3) via integration of the intrinsic
elongation rate [18]:

A% _ Xen J A dt —
0

5 3 (15)

(AS )cycle
N

This integration usually has to be carried out numerically.
A simplified model (7, =0 yields an analytical solution
for the interconnection between the crack growth rate da/dN
and the critical stress intensity factor (toughness rate) in the
form of the Paris power law [8]. This can be utilized, for
example, to simulate very well the dynamic crack propaga-
tion in different highly cross-linked polymer networks
[18,19].

For elastomeric materials far above glass transition
temperature, v,o < 1, vio <1, Tl_l # 0, we obtain
according to Eq. (15) together with Egs. (3), (11)—(14) the
following result:

(AS )cycle _ Op T
— Aeff  ~ )
s G |7

+(1—e ™

J

where the time 7 is related to the model parameters of the
flow enhanced standard solid as follows: 7, ! = AywG,.
Eq. (16) shows that the model parameters appear in the
two characteristic material times 7, and 7, that will be
discussed in Section 4. In the following example, we
consider unfilled polymer materials and discard elongation
amplification by fillers. Investigations with filled rubbers
will be published in a separate paper.

(1—e ")

2wkt
T [ (7'2/7'3) + 412 (16)
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Fig. 6. Estimation of the parameters of Eq. (9) according to a non-linear regression using data of the stress—time curve (b) recorded on samples shown in (a).

The quality of regression is shown in (c).
3. Determining parameters

Step 1: Determining the initial values A, v

In case of two different constant elongation rates, the
stress—strain curves of the two experiments are estimated.
The following applies to A, =0: A = const=
Agsinh(vgo). This yields the two functions Ag = f(vy). The
intersecting point determines the initial values for the
material parameters As, vg (Fig. 5).

Step 2: A non-linear regression determines the parameter
of an elongation—time curve (Eq. (9)) with elongation under
constant stress (Fig. 6).

Table 1 depicts an example of the parameters for an
unfilled rubber consisting of styrene butadiene copolymer
SBR 1500 and cross-linked with 1.2 phr ( = parts of weight
per hundred parts of polymer) of sulfur and 1.2 phr N-cyclo-
hexylbenzothiazole-2-sulfenamide ~ (CBS)  accelerator.
Although, we have presented here the derivation of the
general theory of dynamic crack propagating in filled
rubbers, we restrict the example to the simplest case of an
unfilled sample. The corresponding results of a larger set of
samples (including filled rubbers) will be published in a
separate paper.

The quality of the regression is shown in Fig. 6¢, com-
paring the curve values calculated with the parameters given
in the measured curve.

Table 1
G, (MPa) A, (s™) vy MPa™") G, (MPa) A (s h v (MPa™})
0.625 131x107° 6.03 3.43 24%x107* 145

The comparison between the crack propagation rate
determined from Eq. (16) and the TFA results is depicted
in Fig. 7 where the crack propagation rate is shown as a
function of the stress intensity maximum.

The critical stress intensity factor K. in Eq. (16) was
determined with a notched sample using a static tensile
test. It characterizes the toughness at maximum crack length
before the sample breaks. The cohesive stress o, was deter-
mined from the Young modulus E of a tensile—compression
test (non-notched sample) according to o, = E/15 [11,21].

4. Conclusions and final remarks

We have shown that the dynamic crack propagation in
rubbers can be modeled via the combination of three
physical concepts: (i) self-affine crack propagation, (ii)
stress intensity factor (crack tip opening displacement),
and (iii) Eyring-like flow-enhanced neo-Hookean standard
solid as a representative of the rubber solid. The effect of
viscous flow on the creep stretch will not occur in the second
creep stage if one removes the dashpot connected in series
with the spring. Then, the (linear standard solid) model
describes only the viscoelastic behavior of a non-damaged
rubber sample. New intrinsic material parameters (v, v, As,
Ay are introduced which can be estimated from simple (non-
destructing) stress—strain and creep experiments. These
parameters are related to activation volumes and activation
energies, respectively, at the crack tip material which is
described with the generalized standard solid model. A
reasonable interpretation follows from the inverse para-
meters 1/vs, [MPa], 1/A;, [s] having the meaning of intrinsic
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Fig. 7. Comparison between the crack propagation rate determined from Eq. (16) and the TFA results. The crack propagation rate is shown as a function of the

stress intensity maximum. The used sample is an unfilled SBR rubber.

moduli and times, respectively. The combinations 7, ' =

Ayv,G, and T L= AvG, define the two characteristic
relaxation times of the rubber material (7, = 10% s, T =
10% s). Both times are much larger than the stress period 7=
1/30 s. In this case 7/7;; < 1 only the third term in Eq. (16)
yields significant contributions to the crack length propaga-
tion. The first two terms are not dependent on the stress
intensity and determine the transition to the low (zero) stress
intensity amplitude region which is not involved within our
model considerations. Otherwise, the dependence of crack
propagation on stress intensity amplitude is mainly deter-
mined using the third term in Eq. (16). For a fixed stress
intensity, k = AK/K,,;, reaches its maximum for 7= 7, =
6.47. We find 7, = 640 s for our example. This time 7,
corresponds to a critical frequency of the stress intensity,
say o, = 2m/t, (~107*s""), where crack propagation
reaches a maximum for given stress intensity conditions.
In the case of load frequencies w > w,, the material behaves
‘stiffer’ and less sensitive against crack propagation. In the
opposite case, w < w,, the material approaches the static
case where again the dynamic crack propagation rate
decreases. For w = w,, a calculation of the maximum
possible crack propagation per cycle yields a value of
Vierackerit ~ 1073 m/cycle which is high above the experi-
mental estimated value for the used loading frequency 30/
4 Hz, vk ~ 1077 m/cycle (see Fig. 7).

The purpose of this paper is to offer some new insights to
the problem of dynamic crack propagation in rubbers.
Moreover, findings such as critical frequencies can be

used for guidelines in predictive testing of rubber materials.
However, we have not given any molecular interpretations
of the two relaxation times that were introduced. We
speculate that the large values of the relaxation times
(10%, 107 s) can be traced back to the extremely long-time
relaxation behavior of free dangling ends [22] that arise
during crack propagation and the cutting of network
chain.

We note that our approach and Eq. (4) is restricted to
tensile deformation. The neo-Hooke’s law (Eq. (5)) leads
to further restriction of the approach to amorphous rubbers
and excludes strain-crystallizing rubber materials.

We finally conclude that dynamic fracture and fatigue of
rubbery materials are complex phenomena. However,
certain physical concepts can be used to predict the crack
propagation properties, since failure of rubbers is preceded
by viscoelastic responses.
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Appendix A

The TFA measurement (Fig. 1) was carried out with a
controlled elongation of 22.5%.
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The following data were recorded and analyzed:
cycle number, N

min. force

max. force

max. tension

overall energy density, Wi,

elastic energy density, W,

true elongation, €

crack length, a

The (pulsed) stress frequency amounted to 30/4 Hz.

Appendix B

Using the critical stress intensity factor K, we introduce a
one-parameter description of the stress field surrounding a
crack tip, generally under the condition of linear elastic
materials with small plastic deformations. It is possible to
define a critical stress intensity factor according to Refs.
[11,21] for polymer systems with samples notched on one
side:

K = Qoa 12

with a representing the crack length, o the current stress,
and Q a geometry factor

0= [1.99 —0.4(“)
w
2 3 4
+ 18.70(“) —38.48(“) +53.85<“) ]
w w w

where w is the sample width.

COD = —

We use K; (see Eq. (1)) to determine the COD values at

any time during a TFA test:

8K, +a

E 2m
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